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ABSTRACT

The problem of potential steady subsonic flow for lifting

surfaces is considered. This problem requires the solution of

an integral equation relating the values of the potential

discontinuity on the lifting surface and its wake to the values

of the normal derivative of the potential which are known from

the boundary conditions. The lifting surface is divided into

small (quadrilateral hyperboloidal) surface elements, Z71 ,

which are described in terms of the Cartesian components of the

four corner points. The values of the potential discontinuity

and the normal derivative of the potential are assumed to be

constant within each element and equal to their valuesat

the centroids of the elements. This yields a set of-linear

algebraic equations. Numerical results are in good agreement with

existing ones.
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LIST OF SYMBOLS

a. base vectors,,-defined by Eq. 2.2
1

ai, .i' i = 1, 2, 3 See Eqs. 2.13 and 2.14

Ahk Eqs. 1.10 and 1.11

Bh  Eqs. 1.10 and 1.11

CL Lift coefficient per unit angle
of attack

Dk, Dh Defined by Eq. 1.4

Iv(1,?) Defined by Eq. 2.9

I D (Q , ) See Eqs. 2.9 and 2.10

normal to the surface 2 at Ph

NX,NY number of wing boxes along x and y
directions, respectively

P(,X, 4) control point

P++, P+-, P-+,P-- See Eq. 2.7

P ,P , ,P ,P3  See.~ Eq. 2.7

q See Eq. 2.5

Q1'Q2,Q3 Q4  See Eq. 2.40

See Eq. 2.5

'Zh' V_ Velocity at point Ph or Pk

- See Eq. 2.8

x,y,z Cartesian coordinates

Defined by Eq. 2.1

Defined by Eq. 2.4
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List of Symbols, continued

Surface of the body

Surface of the wake

Perturbation aerodynamic potential

Value of ( at Pk

SPECIAL SYMBOLS

Gradient operator in x, y, z coor-
dinates

T.E. Trailing edge
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SECTION I

FORMULATION OF THE PROBLEM

1.1 Introduction

References 1 and 2 present a general theory for compressible

unsteady potential aerodynamic flow around lifting bodies

having arbitrary shapes and motions. Reference 3 presents a

general numerical formulation for complex configurations in

steady subsonic flow. Results are presented in Ref. 4. However,

such a formulation is not applicable to zero-thickness configur-

ations (lifting surfaces). The present work introduces a

formulation suitable for use with lifting surfaces.

The distribution of the perturbation aerodynamic potential

, around a body of arbitrary shape is given by the following

integral expression

where

E = 0 inside the body

E = 1 outside the body

E = 1/2 on the body

(1.2)

1 ts a surface surrounding the body and its wake, and n

represents the normal to the surface.

If the distance between the upper and lower sides of

the surface goes to zero (zero-thickness body), one obtains a

lifting surface formulation

~0 4( D -Y(1 ) I (1.3)

~ i-2j~w
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where

(1.4)

The subscript cu stands for upper and e stands for lower.

Equation (1.3) shows that the potential can be represented

in terms of doubletson the body and on the wake. On the wake,

the value of D is constant along a streamline and equal to D

at the trailing edge.

1.2 .-Discretization

By dividing the lifting surface into small elements (see

also Ref. 3) and applying the mean value theorem for Eq. (1.3),

one obtains

S( 1.5)

where D are suitable mean valueswithin the element, and the

summation is performed over the elements of the lifting surface

and of the wake, which is approximated by straight vortex lines

starting at the lifting surface trailing edge. The perturbation

velocity,z=Y , at the point Ph , is given by

4 I ( 1 .6 )

where
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( 1.7)

is the velocity created by the element . The normal de-

rivative at the point Ph of the surface is given by

z P= ( 1.8)

The boundary condition to be satisfied at L points (L is the

number of lifting surface elements) is

V - = (1.9)

which, when combined with Eq. ( 1.8) becomes:

Z[ A (1.10)

for the L unknown Dh . In Eq. (1.10)

8  P Ph -ah ( 1.1)

where i is the unit vector in the direction of the x-axis.

The contribution of the wake elements adds only to the row of

lifting surface elements in contact with the trailing edge.

Once Eq. (L.10) is sblved, the velocity. Iq can be evaluated

through Eq. (1.6) using the same coefficients V_-T .
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SECTION II

HYPERBOLOIDAL QUADRILATERAL ELEMENT

2.1l Introduction

Reference 3 introduces a new type of surface element, the

hyperboloidal quadrilateral element, a short description of

which will be given here. Then, the gradient of Eq. (1.3)

(the integral is obtained in analytical form in Ref. 3) will be

computed and further, the result will be put in a simple vector

form.

2-2 Surface Geometry with Hyperboloidal Quadrilateral Element

Let the geometry of the element , be described by the

vector

(2.1)

where 1 and are the generalized curvilinear coordinates

(Fig. 1).

The two base vectors are given by

(2.2)

and the unit normal to the surface is obtained as

I x n (2.3)

The surface element AdZis

(2.4)
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The expression for r is

'2- (2.5)

Now, consider the equation

-, ~ -..

(2.6)

The above equation represents a hyperboloid (Fig. 2). Pc

represents the centroid of the element 24 , with - 0.

The corner points of the element , are P , P-_,

P-+, P__ , and they are fed in as geometry inputs in the computer

program implementing the theoretical formulation. The relation-

ship between the corner points and P~ , Pt ' ' P, is

I c I

P I '-I P-1 +

P3  I -I - f P_
(2.7)

2.3 The Doublet Integral

Looking again at Eq. (1.13), it can be written in the

following form

(2.8)

where

z2 o, I- J3 1) (2.9)
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where the doublet integral ID ( , ) was obtained in analytical

form (Ref. 3, Eq. 6.6) aS

(2.10)

In order to perform the gradient derivative in Eq. (2.8), it

is convenient to consider the directional derivative in the

arbitrary direction . By noting that only =P Po

depends upon P,, or

,a. O (,f-_-/, 2)
9' V (2.11)

one obtains

+ xa-- - - -2-

-30 ' ., ,,- - , ,a, x ,,

-' )-

IS 1 t~ , z+ Gt 3 YL-

(* .r )? ) C9-m ~ ~>'



Next, i iis convenient to introduce some classical concepts

I(of tensor analysis,. Consider the rela)(tionships between the two, ax g i , 'x -i )i + ax h -i - ax 4 at , x av) 5 a

( , X1. W J( V .xe -*-V f X a,.

(2.12)

Next, it is convenient to introduce some classical concepts

of tenser analysis. Consider the relationships between the two

sets of conjugate base vectors

_ -_-_ Q X L. -)

a3 ( 1 (2.13)

and

ai= -- xc--- a 02.16

-- I I

- -.. (2.15)



Furthermore, using classical notations, it is possible to

write
-- 3-

-1 , -2 C43 - 1 (2.17)

with

S(2.18)

Moreover, it is convenient to consider the three derivatives

'5O21D, D and 'D~/j / . Since 9 is an arbitrary

vector, Eq. (2.12) with 9 = a1 , yields

-I K 2 1 +c aaI2. -- -

S .(2 a, -

I a2.(2.19)

I Q f~ i~Ia



9

Similarly, for = ,a

01 -~ 0 - -q

- aa xa

(2.20)

Finally,- for 2 = and using Eqs. (B.1) and (3.45) of Ref. 3,

yields,

.C.. a a, Ka -2F-

(n-c, -t , n , C - n a-

(9- a, a .a,c; a ) ae -2 x n a -

OL ,

ce
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(X a,.a d - 9a, .0 a) til n a xa,

y - - - 5 -7

(~ a +a, q )(e a, a

+ Qt aq , aq o L ac4 aL ,-, a( a .'L ia
1 a, xCa

t-Re-a 1LL e xali - .a L a, xa a,x - L.4a, aza, a x

(0.g a -a .a . A

- 9 a a/*u 1 (e yLy la;- - e d,. c

F c a, X.,§, a J- - (9-, ) X

-n a 'n 2 a,a
(2.21)



or

(2.22)

Finally, combining Eqs. (2.13) and (2.18) yields

- a---_ z _. Po ID -
e b

- 3- 3--

' D + L ZD 3 3

2, 2 a 3

a - - ' Za '9- I
9 x l a2.a x

OP (2.23)

-- - -

7 .-ix_ 9.-t,
I xa, - - 1 x I I. I

(2.24)
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Since, according to Eqs. (2.13) to (2.16), and Eq. (3.44) of

Ref. 3,

(2.25)

and

2-'k, .3-

(2.26)

Equation (2.24) is equivalent to the desired expression

for TID

)qx a, j.,

(2.27)

5* 4 -A lternative Proof

In order to verify Eq. (2.27), note that according to

Eqs. (2.9) and (3.50) of Ref. 3
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'5D zv 01

I)I

(2.28)

Noting that

( ~2& ,): - - (?) (P, +7)= o

,( (P; P,) ( P,)= o
(2.29)

yields

(2.30)

-- ( W ~, X -

] _ IC. IL aX/e -

(2.30)

and, similarly, interchanging indices,

___x a 2-
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-9P(a3x e 9 P)- 3 X . 11

(2.31)

and thus

opr = ~i ,xlz +3 ( xa,q-az- 2x a a,) r

(2.32)

On the other hand

/3

--- -
-- ) ' 1--a, XL _ xa -

-- . z c. L.,xa,.3 (*a, gL2 - xa a,)].

(2.33)

Since

j a ,'x L -2. a,az x =

- x. + 9 a 7. + x CL, - ta2- (2.34)
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Since 3 is an arbitrary vector, Eq. (2.25) is equivalent to

-v 2 ) j c {2 t a , -- xd jl 1

(2.35)

Equations (2.32) and (2.35) are the desired proof of the

validity of Eq. (2.28).

2.5 -Singularity at q = 0

If the point P0 belongs to the surface Z& , the integral

in Eq. (l17 ) is singular. In the following, the type of

singularity is analyzed and it is shown that the principal

value of the integral must be used. Consider a small circle

of radius E in the neighborhood of the singularity. Assume

that the point PO is at very small distance from the surface

Eg and consider a small circular element 2r on with

the center on the normal projection of P on the surface

and radius .

Assuming the z-axis to be directed along the normal n,

Eq. (1.7) reduces to

m I-Z, (2.36)

with (for symmetry reasons, the derivatives with respect to

x0 and yo are zero)

-* is t on boundary of () dp

* PO is not on the boundary of Z.



16

+ "

(2.37)

As Z0 approaches zero, one obtains

z, 5 n T(2.38)

with

S--(2.39)

It may be noted that the first expression in Eq. (2.38)

is not singular. Hence, Eqs. (2.8) and (2.27) (obtained by

using the first integral in Eq.- (2.38)) are still valid even

if the point is on the surface.

2.6 General Element

In this subsection, it is shown how the results obtained

thus far can be rewritten in a more expressive fashion. For

the sake of simplicity, introduce the following notations

Fig. 3Y

* P, is not on the boundary of 5-
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'I, i ) r p - P = ,
-,,) . ,,p- ~. 

(2.40)

Note that

a , C -'I) = (Q - _ )/Z
a. U/--- C ¢ -I 4)I-

(2.41)

Next, combining Eqs. '(2.7), (2.27) (2.40), and (2.41), one

obtains

at X 2. X*r X I~ r

I-. / . 1 jX L, -

_ Caz z A2 (5 (7i

(2.42)
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or

3 - 0) aK (a7- - ) 3(04- 3) x(-~4)I O .. .. )x -I- c._-4 \_4 -. x, .

L2 a4- X d4 ZT3

(2.43)

or

3 x -. 3 l ( ,- +

C- I

(2.44)

It may be noted that each of the four terms depends upon two

corners of one edge of the element. Hence, Eq. (2.44) is

independent of the numbering used (it depends, however, upon

the direction of the numbering which is anticlockwise with

respect to the normal n).
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Next, consider the limit of Eq. (2.44) when one edge

shrinks to zero, that is when the hyperboloidal element

reduces to a triangular element.. As mentioned, the numbering

is inessential. Hence, without loss of generality, it is

assumed that Q- . 3 (see Fig. 4-). By setting

Q4 Q 3  0 4 3
(2.45)

where L44 is a unit vector and , tends to zero. The last

term of Eq. (2.44) yields

3 X 4,+3 3 4 04O-043

(2.46)

Hence, for triangular elements

_ 3 ( .- 2 7I- +

(2.46)- - -
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Similarly, for a polygonal element with n corners

(2.48)

with

(2.49)

Equation (2.48) can be proved as follows. The solid angle

is an additive quantity. Hence, VF , which is the gradient

of the solid angle is an additive quantity. Thus, the

general proof is obtained by mathematical induction: assumed

to be true for n = no, it is shown to be true for n = no + 1.

Thus (see Fig. 5 for the case n0 = 4), noting that Tij -T''

+ 3L

) r 13 , /+13

(2.50)

in agreement with Eq. (2.48).
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SECTION III

SUMMARY AND RESULTS

Consider Eq. (1.3); dropping the subscript 0 yields

Assume that the geometry of the wake is prescribed as

straight vortex lines or from the preceeding iterations

(See Fig. 5; for a description of the iteration procedure

see Ref. 5). Divide the wake into L strips, 27 , each bounded

by two streamlines. Divide the surface of the body into

small polygonal elements (hyperboloidal quadrilateral, or

triangular, for instance).

Then, Eq. (3.1) can be approximated by

(3.2)

Next, assume that, in virtue of the Kutta condition it is

possible to replace 6DTEe with the values of D at the centroid

Xk of the element having an edge in common with the strip 2'.

Then, Eq. (3.2) can be rewritten as

IA (3.3)

where

(3.4)
5-hZ
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if f-k has no edge in contact in contact with the 
wake, while

7 - h t (3.5)

if Zh has an edge in contact with the strip ~.

The perturbation velocity, lF , at the centroid, h

of the element - k is given by

N
L - - '5P 1) (3.6)

where

-/1: j - (37)

Finally, imposing the boundary condition at the centroid

of the elements, Zk, yields the system

[Ah] {Dj gh j (3.8)

where

, 4= ,rhh nh (3.9)

while

S (3.10)

is prescribed from the boundary conditions. Solving Eq. (3.8)

yields the coefficient DA: then, it is possible to evaluate

q through Eq. (3.6) .

The integral in Eq. (3.4) can be evaluated by using

Eq. (2.48) for a general polygonal element, or Eq.(2.43 for

triangular elements, or Eq. (2.44) for hyperboloidal quadri-

lateral elements . Note that, if the element E4 includes
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a strip Ze, it will be convenient to approximate it with

a series of quadrilateral subelements. Then F+ can be

treated as a single polygonal element: in this way the con-

tribution of the edges (which would eventually eliminate

each other) need not be evaluated.

This formulation has been implemented into a computer

program, ILSA , (acronym for Incompressible Lifting Surface

Aerodynamics). See also Ref. 5. Figure 7 shows the lift

coefficient distribution per unit angle of attack for a

rectangular wing of AR = 8, at Mach Number M = 0. A conver-

gence study for various numbers of wing elements is also

shown and compared to the result obtained by Yates (Ref. 6).

The results obtained with ILSA indicate good agreement with

existing ones and a fast rate of convergence. As mentioned

before, a better wake geometry can be obtained by an iteration process.

This process is shown in detail in Reference 5.
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Fig. 6. Lifting surface and wake geometry
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